Photo-CIDNP 13C magic angle spinning NMR on bacterial reaction centres: exploring the electronic structure of the special pair and its surroundings.
نویسندگان
چکیده
Photochemically induced dynamic nuclear polarisation (photo-CIDNP) in intact bacterial reaction centres has been observed by 13C-solid state NMR under continuous illumination with white light. Strong intensity enhancement of 13C NMR signals of the aromatic rings allows probing the electronic ground state of the two BChl cofactors of the special pair at the molecular scale with atomic selectivity. Differences between the two BChl cofactors are discussed. Several aliphatic 13C atoms of cofactors, as well as 13C atoms of the imidazole ring of histidine residue(s), show nuclear-spin polarisation to the same extent as the aromatic nuclei of the cofactors. Mechanisms and applications of polarisation transfer are discussed.
منابع مشابه
Characterization of bacteriopheophytin a in the active branch of the reaction center of Rhodobacter sphaeroides by 13C photo-CIDNP MAS NMR
The electronic structure of the primary electron acceptor, bacteriopheophytin a (A), in photosynthetic reaction centers (RCs) of the purple bacterium Rhodobacter (R.) sphaeroides is investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) NMR spectroscopy. Uniformly labelled RCs have been prepared for these experiments, by adding the u-13C4-...
متن کاملAction Spectroscopy on Dense Samples of Photosynthetic Reaction Centers of Rhodobacter sphaeroides WT Based on Nanosecond Laser-Flash 13C Photo-CIDNP MAS NMR
Photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance (photo-CIDNP MAS NMR) allows for the investigation of the electronic structure of the photochemical machinery of photosynthetic reaction centers (RCs) at atomic resolution. For such experiments, either continuous radiation from white xenon lamps or green laser pulses are applied to optically den...
متن کامل15N Photo-CIDNP MAS NMR To Reveal Functional Heterogeneity in Electron Donor of Different Plant Organisms
In plants and cyanobacteria, two light-driven electron pumps, photosystems I and II (PSI, PSII), facilitate electron transfer from water to carbon dioxide with quantum efficiency close to unity. While similar in structure and function, the reaction centers of PSI and PSII operate at widely different potentials with PSI being the strongest reducing agent known in living nature. Photochemically i...
متن کامل15N photochemically induced dynamic nuclear polarization magic-angle spinning NMR analysis of the electron donor of photosystem II.
In natural photosynthesis, the two photosystems that operate in series to drive electron transport from water to carbon dioxide are quite similar in structure and function, but operate at widely different potentials. In both systems photochemistry begins by photo-oxidation of a chlorophyll a, but that in photosystem II (PS2) has a 0.7 eV higher midpoint potential than that in photosystem I (PS1...
متن کاملPhotochemically Induced Dynamic Nuclear Polarization Observed by Solid-State NMR in a Uniformly (13)C-Isotope-Labeled Photosynthetic Reaction Center.
A sample of solubilized and quinone-depleted reaction centers from the purple bacterium Rhodobacter (R.) sphaeroides wild type has been prepared entirely (13)C and (15)N isotope labeled at all positions of the protein as well as of the cofactors. In this sample, the occurrence of the solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect has been probed by (13)C s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biological chemistry
دوره 382 8 شماره
صفحات -
تاریخ انتشار 2001